Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Freshw Sci ; 41(2): 167-182, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35846249

RESUMO

Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms, respectively, from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic-terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.

2.
Water (Basel) ; 13(12): 1-20, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35342643

RESUMO

Observations of the presence or absence of surface water in streams are useful for characterizing streamflow permanence, which includes the frequency, duration, and spatial extent of surface flow in streams and rivers. Such data are particularly valuable for headwater streams, which comprise the vast majority of channel length in stream networks, are often non-perennial, and are frequently the most data deficient. Datasets of surface water presence exist across multiple data collection groups in the United States but are not well aligned for easy integration. Given the value of these data, a unified approach for organizing information on surface water presence and absence collected by diverse surveys would facilitate more effective and broad application of these data and address the gap in streamflow data in headwaters. In this paper, we highlight the numerous existing datasets on surface water presence in headwater streams, including recently developed crowdsourcing approaches. We identify the challenges of integrating multiple surface water presence/absence datasets that include differences in the definitions and categories of streamflow status, data collection method, spatial and temporal resolution, and accuracy of geographic location. Finally, we provide a list of critical and useful components that could be used to integrate different streamflow permanence datasets.

3.
Ecosystems ; 25: 989-1005, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36405421

RESUMO

Ecosystems in the Anthropocene face pressures from multiple, interacting forms of environmental change. These pressures, resulting from land use change, altered hydrologic regimes, and climate change, will likely change the synchrony of ecosystem processes as distinct components of ecosystems are impacted in different ways. However, discipline-specific definitions and ad hoc methods for identifying synchrony and asynchrony have limited broader synthesis of this concept among studies and across disciplines. Drawing on concepts from ecology, hydrology, geomorphology, and biogeochemistry, we offer a unifying definition of synchrony for ecosystem science and propose a classification framework for synchrony and asynchrony of ecosystem processes. This framework classifies the relationships among ecosystem processes according to five key aspects: 1) the focal variables or relationships representative of the ecosystem processes of interest, 2) the spatial and temporal domain of interest, 3) the structural attributes of drivers and focal processes, 4) consistency in the relationships over time, and 5) the degree of causality among focal processes. Using this classification framework, we identify and differentiate types of synchrony and asynchrony, thereby providing the basis for comparing among studies and across disciplines. We apply this classification framework to existing studies in the ecological, hydrologic, geomorphic, and biogeochemical literature, and discuss potential analytical tools that can be used to quantify synchronous and asynchronous processes. Furthermore, we seek to promote understanding of how different types of synchrony or asynchrony may shift in response to ongoing environmental change by providing a universal definition and explicit types and drivers with this framework.

4.
WIREs Water ; 7(3)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32802326

RESUMO

Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed-scale processes. When stream gages read zero, this may indicate that the stream has fully dried; however, zero-flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero-flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero-flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human-driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero-flow interpretations. We also highlight additional methodss for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero-flow gage readings and implications for reach- and watershed-scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero-flows will only attain greater importance in a more variable and changing hydrologic climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...